
OSCAR

The OSCAR Team

Bad Münster am Stein, February 18, 2019

OSCAR Team OSCAR BMS 1 / 25

What did we promise?

Outline

1 What did we promise?

2 Examples: Current use of the individual cornerstone systems

3 Examples: Current use of more than one cornerstone system

4 Design Questions: The beginnings of a unified interface

5 Future plans

OSCAR Team OSCAR BMS 2 / 25

What did we promise?

Outline

1 What did we promise?

2 Examples: Current use of the individual cornerstone systems

3 Examples: Current use of more than one cornerstone system

4 Design Questions: The beginnings of a unified interface

5 Future plans

OSCAR Team OSCAR BMS 2 / 25

What did we promise?

Outline

1 What did we promise?

2 Examples: Current use of the individual cornerstone systems

3 Examples: Current use of more than one cornerstone system

4 Design Questions: The beginnings of a unified interface

5 Future plans

OSCAR Team OSCAR BMS 2 / 25

What did we promise?

Outline

1 What did we promise?

2 Examples: Current use of the individual cornerstone systems

3 Examples: Current use of more than one cornerstone system

4 Design Questions: The beginnings of a unified interface

5 Future plans

OSCAR Team OSCAR BMS 2 / 25

What did we promise?

Outline

1 What did we promise?

2 Examples: Current use of the individual cornerstone systems

3 Examples: Current use of more than one cornerstone system

4 Design Questions: The beginnings of a unified interface

5 Future plans

OSCAR Team OSCAR BMS 2 / 25

What did we promise?

Long-Term goals

(S1) Integrate all computer algebra systems, libraries and packages
developed within the TRR 195 into a visionary next generation open
source computer algebra system surpassing the combined
mathematical capabilities of the underlying systems. pause

(S2) Boost the performance of the visionary system to a new level by
parallelising fundamental algorithms.

OSCAR Team OSCAR BMS 3 / 25

What did we promise?

Overview: The cornerstones and Julia

Examples:

Multigraded equivariant COX rings of
toric varieties over number fields

Graphs of groups in division algebras

Matrix groups over polynomial rings
with coefficients in number fields

Gröbner fans over fields with
discrete valuations

Visionary system surpassing the combined
capabilities of the underlying systems

GAP: computational discrete al-
gebra, group and representa-
tion theory, general purpose high
level interpreted programming
language.

Singular: polynomial computa-
tions, with emphasis on algebraic
geometry, commutative algebra,
and singularity theory.

polymake: convex polytopes,
polyhedral and stacky fans, sim-
plicial complexes and related ob-
jects from combinatorics and ge-
ometry.

ANTIC: number theoretic soft-
ware featuring computations
in and with number fields and
generic finitely presented rings.

OSCAR Team OSCAR BMS 4 / 25

Examples: Current use of the individual cornerstone systems

The cornerstones
We have two kinds of cornerstones

Interfaces from Julia to GAP, Polymake, and Singular, which form
“interface modules”
Nemo/AbstractAlgebra/Hecke provide functionality in Julia

So we talk about interfaced functionality for GAP/Singular/Polymake, and
about provided functionality by Nemo/AbstractAlgebra/Hecke

OSCAR Team OSCAR BMS 5 / 25

Examples: Current use of the individual cornerstone systems

The cornerstones
We have two kinds of cornerstones

Interfaces from Julia to GAP, Polymake, and Singular, which form
“interface modules”

Nemo/AbstractAlgebra/Hecke provide functionality in Julia

So we talk about interfaced functionality for GAP/Singular/Polymake, and
about provided functionality by Nemo/AbstractAlgebra/Hecke

OSCAR Team OSCAR BMS 5 / 25

Examples: Current use of the individual cornerstone systems

The cornerstones
We have two kinds of cornerstones

Interfaces from Julia to GAP, Polymake, and Singular, which form
“interface modules”
Nemo/AbstractAlgebra/Hecke provide functionality in Julia

So we talk about interfaced functionality for GAP/Singular/Polymake, and
about provided functionality by Nemo/AbstractAlgebra/Hecke

OSCAR Team OSCAR BMS 5 / 25

Examples: Current use of the individual cornerstone systems

The cornerstones
We have two kinds of cornerstones

Interfaces from Julia to GAP, Polymake, and Singular, which form
“interface modules”
Nemo/AbstractAlgebra/Hecke provide functionality in Julia

So we talk about interfaced functionality for GAP/Singular/Polymake, and
about provided functionality by Nemo/AbstractAlgebra/Hecke

OSCAR Team OSCAR BMS 5 / 25

Examples: Current use of the individual cornerstone systems

Polymake.jl example

julia> p = perlobj("Polytope",
Dict("INEQUALITIES" => [0 1 0 ; 0 0 1 ; -1 1 1]));

julia> l = p.LATTICE_POINTS_GENERATORS;
julia> l[1]
pm::Matrix<pm::Integer>
1 0 1
1 1 0
julia> l[2]
pm::Matrix<pm::Integer>
0 1 0
0 0 1
julia> polytope.intersection(p, polytope.cube(2)).VERTICES
pm::Matrix<pm::Rational>
1 1 0
1 1 1
1 0 1

OSCAR Team OSCAR BMS 6 / 25

Examples: Current use of the individual cornerstone systems

Polymake.jl features

Most functionality of Polymake is exported to Julia:

Many data types are mapped into Julia (manually)
Small objects (e.g., matrices, vectors) fulfill their corresponding
abstract Julia types,so they can be used like Julia objects, but also
converted into native Julia objects.
All types of “Big Objects” (e.g., Polytopes, Fans) can be created and
manipulated in Julia
All properties and functions are automatically exported to Julia, and
are mirrored as Julia functions

OSCAR Team OSCAR BMS 7 / 25

Examples: Current use of the individual cornerstone systems

Polymake.jl features

Most functionality of Polymake is exported to Julia:

Many data types are mapped into Julia (manually)

Small objects (e.g., matrices, vectors) fulfill their corresponding
abstract Julia types,so they can be used like Julia objects, but also
converted into native Julia objects.
All types of “Big Objects” (e.g., Polytopes, Fans) can be created and
manipulated in Julia
All properties and functions are automatically exported to Julia, and
are mirrored as Julia functions

OSCAR Team OSCAR BMS 7 / 25

Examples: Current use of the individual cornerstone systems

Polymake.jl features

Most functionality of Polymake is exported to Julia:

Many data types are mapped into Julia (manually)
Small objects (e.g., matrices, vectors) fulfill their corresponding
abstract Julia types,

so they can be used like Julia objects, but also
converted into native Julia objects.
All types of “Big Objects” (e.g., Polytopes, Fans) can be created and
manipulated in Julia
All properties and functions are automatically exported to Julia, and
are mirrored as Julia functions

OSCAR Team OSCAR BMS 7 / 25

Examples: Current use of the individual cornerstone systems

Polymake.jl features

Most functionality of Polymake is exported to Julia:

Many data types are mapped into Julia (manually)
Small objects (e.g., matrices, vectors) fulfill their corresponding
abstract Julia types,so they can be used like Julia objects, but also
converted into native Julia objects.
All types of “Big Objects” (e.g., Polytopes, Fans) can be created and
manipulated in Julia

All properties and functions are automatically exported to Julia, and
are mirrored as Julia functions

OSCAR Team OSCAR BMS 7 / 25

Examples: Current use of the individual cornerstone systems

Polymake.jl features

Most functionality of Polymake is exported to Julia:

Many data types are mapped into Julia (manually)
Small objects (e.g., matrices, vectors) fulfill their corresponding
abstract Julia types,so they can be used like Julia objects, but also
converted into native Julia objects.
All types of “Big Objects” (e.g., Polytopes, Fans) can be created and
manipulated in Julia
All properties and functions are automatically exported to Julia, and
are mirrored as Julia functions

OSCAR Team OSCAR BMS 7 / 25

Examples: Current use of the individual cornerstone systems

Singular.jl example

julia> R, (x, y) = PolynomialRing(QQ, ["x", "y"]);
julia> I = Ideal(R, x + 1, x^2*y + 1)
Singular Ideal over Singular Polynomial Ring

(QQ),(x,y),(dp(2),C) with generators (x+1, x^2*y+1)
julia> G = std(I)
Singular Ideal over Singular Polynomial Ring

(QQ),(x,y),(dp(2),C) with generators (y+1, x+1)
julia> fr = fres(G, 0)
..omitted..
julia> fr=minres(fr)
Singular Resolution:
R^1 <- R^2 <- R^1
julia> B=betti(fr)
1×3 Array{Int32,2}:
1 2 1

OSCAR Team OSCAR BMS 8 / 25

Examples: Current use of the individual cornerstone systems

Singular.jl features

Singular.jl exports and abstracts Singular functionality in Julia

All kernel types and many kernel functions are exported into Julia
Singular.jl contains abstractions from pure Singular, to make use of
Julia’s type system and get rid of implicit states (e.g., the current ring)
Rings defined in Julia can be used as coefficient rings for Singular
polynomial rings

Furthermore, Singular.jl will interface the latest Singular features,
developed in the TRR

New non-commutative Groebner basis and algebra in Singular:Plural
(Zerz, Levandovskyy, ...)
Massive shared memory and multi-node parallelization in Singular via
pSingular and GPI-Space (Behrends, Böhm, Steenpass, ...)

OSCAR Team OSCAR BMS 9 / 25

Examples: Current use of the individual cornerstone systems

Singular.jl features

Singular.jl exports and abstracts Singular functionality in Julia

All kernel types and many kernel functions are exported into Julia

Singular.jl contains abstractions from pure Singular, to make use of
Julia’s type system and get rid of implicit states (e.g., the current ring)
Rings defined in Julia can be used as coefficient rings for Singular
polynomial rings

Furthermore, Singular.jl will interface the latest Singular features,
developed in the TRR

New non-commutative Groebner basis and algebra in Singular:Plural
(Zerz, Levandovskyy, ...)
Massive shared memory and multi-node parallelization in Singular via
pSingular and GPI-Space (Behrends, Böhm, Steenpass, ...)

OSCAR Team OSCAR BMS 9 / 25

Examples: Current use of the individual cornerstone systems

Singular.jl features

Singular.jl exports and abstracts Singular functionality in Julia

All kernel types and many kernel functions are exported into Julia
Singular.jl contains abstractions from pure Singular, to make use of
Julia’s type system and get rid of implicit states (e.g., the current ring)

Rings defined in Julia can be used as coefficient rings for Singular
polynomial rings

Furthermore, Singular.jl will interface the latest Singular features,
developed in the TRR

New non-commutative Groebner basis and algebra in Singular:Plural
(Zerz, Levandovskyy, ...)
Massive shared memory and multi-node parallelization in Singular via
pSingular and GPI-Space (Behrends, Böhm, Steenpass, ...)

OSCAR Team OSCAR BMS 9 / 25

Examples: Current use of the individual cornerstone systems

Singular.jl features

Singular.jl exports and abstracts Singular functionality in Julia

All kernel types and many kernel functions are exported into Julia
Singular.jl contains abstractions from pure Singular, to make use of
Julia’s type system and get rid of implicit states (e.g., the current ring)
Rings defined in Julia can be used as coefficient rings for Singular
polynomial rings

Furthermore, Singular.jl will interface the latest Singular features,
developed in the TRR

New non-commutative Groebner basis and algebra in Singular:Plural
(Zerz, Levandovskyy, ...)
Massive shared memory and multi-node parallelization in Singular via
pSingular and GPI-Space (Behrends, Böhm, Steenpass, ...)

OSCAR Team OSCAR BMS 9 / 25

Examples: Current use of the individual cornerstone systems

GAPJulia example

julia> S5 = GAP.Globals.SymmetricGroup(5)
GAP: SymmetricGroup([1 .. 5])
julia> orb = GAP.Globals.Orbit(S5, 1, GAP.Globals.OnPoints)
GAP: [1, 2, 3, 4, 5]
julia> g1 = GAP.Globals.GeneratorsOfGroup(S5)[1]
GAP: (1,2,3,4,5)
julia> 4^g1
5

OSCAR Team OSCAR BMS 10 / 25

Examples: Current use of the individual cornerstone systems

GAPJulia example, reversed

A GAP lin. comb. of 4620th roots of 1 (about −3.3 · 10−35), numerically
approximated by arb-library via Nemo: Arb (interval arithmetic):

gap> a:= EY(5);; b:= EY(7);; c:= EY(11);; d:= EY(12);;
gap> z:= [-12230241886849032, -27721673763224765,
> 19808983844326917, 5079707604555803] * [a,b,c,d];;
gap> IsPositiveRealPartCyclotomic(z : ShowPrecision);
#I precision needed: 256
false

Creating and factoring a polynomial via Nemo:

gap> R := Nemo_PolynomialRing(Nemo_QQ, "x");;
gap> x := JuliaPointer(Nemo_Polynomial(R, [0, 1]));
<Julia: x>
gap> Julia.Nemo.factor(x^10-1);
<Julia: 1 * (x^4-x^3+x^2-x+1) * (x-1) *

(x^4+x^3+x^2+x+1) * (x+1)>
OSCAR Team OSCAR BMS 11 / 25

Examples: Current use of the individual cornerstone systems

GAPJulia features

GAPJulia is the bidirectional interface between GAP and Julia:

Uses a unified GC for GAP and Julia
All objects can be transparently shared between GAP and Julia
All functions can be called from either side
No function call or object handling/conversion overhead

OSCAR Team OSCAR BMS 12 / 25

Examples: Current use of the individual cornerstone systems

GAPJulia features

GAPJulia is the bidirectional interface between GAP and Julia:

Uses a unified GC for GAP and Julia

All objects can be transparently shared between GAP and Julia
All functions can be called from either side
No function call or object handling/conversion overhead

OSCAR Team OSCAR BMS 12 / 25

Examples: Current use of the individual cornerstone systems

GAPJulia features

GAPJulia is the bidirectional interface between GAP and Julia:

Uses a unified GC for GAP and Julia
All objects can be transparently shared between GAP and Julia

All functions can be called from either side
No function call or object handling/conversion overhead

OSCAR Team OSCAR BMS 12 / 25

Examples: Current use of the individual cornerstone systems

GAPJulia features

GAPJulia is the bidirectional interface between GAP and Julia:

Uses a unified GC for GAP and Julia
All objects can be transparently shared between GAP and Julia
All functions can be called from either side

No function call or object handling/conversion overhead

OSCAR Team OSCAR BMS 12 / 25

Examples: Current use of the individual cornerstone systems

GAPJulia features

GAPJulia is the bidirectional interface between GAP and Julia:

Uses a unified GC for GAP and Julia
All objects can be transparently shared between GAP and Julia
All functions can be called from either side
No function call or object handling/conversion overhead

OSCAR Team OSCAR BMS 12 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke example

julia> R, x = PolynomialRing(QQ, "x")
(Univariate Polynomial Ring in x over Rational Field, x)
julia> crt(x-1, x^2+1, x+2, x^2+2)
-3*x^2+x-4
julia> rem(ans, x^2+1), rem(ans, x^2+2)
(x-1, x+2)
julia> S = ResidueRing(R, (x^2+1)*(x^2+2))
Residue ring of Univariate Polynomial Ring in x

over Rational Field modulo x^4+3*x^2+2
julia> inv(S(x+2))
-1//30*x^3+1//15*x^2-7//30*x+7//15

OSCAR Team OSCAR BMS 13 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke example

julia> K, s10 = quadratic_field(10);
julia> c, mc = class_group(K)
(GrpAb: Z/2, ClassGroup map of Set of ideals ...‘
julia> Z_K = maximal_order(K);
julia> P = 2*Z_K + Z_K(s10)*Z_K
<2, s10>
julia> isprime(P), isprincipal(P)
(true, false)
julia> H = number_field(hilbert_class_field(K))
non-simple Relative number field over

Number field over Rational Field with
defining polynomial x^2-10
with defining polynomials ... [x_1^2+(-2)]

OSCAR Team OSCAR BMS 14 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Basic features:

Integers, rationals, Z/nZ, GF(p), finite fields, padics, qadics,
real/complex ball arithmetic

Number field arithmetic
Univariate and multivariate polynomial rings, Laurent series, Puiseux
series, rational functions, residue rings
Matrices (both matrix spaces and matrix algebras)
Factorization, (x)gcd, resultant, coprime factorisation, crt, Farey lift
Ideals

OSCAR Team OSCAR BMS 15 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Basic features:

Integers, rationals, Z/nZ, GF(p), finite fields, padics, qadics,
real/complex ball arithmetic
Number field arithmetic

Univariate and multivariate polynomial rings, Laurent series, Puiseux
series, rational functions, residue rings
Matrices (both matrix spaces and matrix algebras)
Factorization, (x)gcd, resultant, coprime factorisation, crt, Farey lift
Ideals

OSCAR Team OSCAR BMS 15 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Basic features:

Integers, rationals, Z/nZ, GF(p), finite fields, padics, qadics,
real/complex ball arithmetic
Number field arithmetic
Univariate and multivariate polynomial rings, Laurent series, Puiseux
series, rational functions, residue rings

Matrices (both matrix spaces and matrix algebras)
Factorization, (x)gcd, resultant, coprime factorisation, crt, Farey lift
Ideals

OSCAR Team OSCAR BMS 15 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Basic features:

Integers, rationals, Z/nZ, GF(p), finite fields, padics, qadics,
real/complex ball arithmetic
Number field arithmetic
Univariate and multivariate polynomial rings, Laurent series, Puiseux
series, rational functions, residue rings
Matrices (both matrix spaces and matrix algebras)

Factorization, (x)gcd, resultant, coprime factorisation, crt, Farey lift
Ideals

OSCAR Team OSCAR BMS 15 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Basic features:

Integers, rationals, Z/nZ, GF(p), finite fields, padics, qadics,
real/complex ball arithmetic
Number field arithmetic
Univariate and multivariate polynomial rings, Laurent series, Puiseux
series, rational functions, residue rings
Matrices (both matrix spaces and matrix algebras)
Factorization, (x)gcd, resultant, coprime factorisation, crt, Farey lift
Ideals

OSCAR Team OSCAR BMS 15 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Advanced features:

Class and unit groups

absolute and relative fields
certified conjugates (ARB)
lattices, sparse and dense linear algebra
class field theory
abelian groups
associative algebras
elliptic curves

OSCAR Team OSCAR BMS 16 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Advanced features:

Class and unit groups
absolute and relative fields

certified conjugates (ARB)
lattices, sparse and dense linear algebra
class field theory
abelian groups
associative algebras
elliptic curves

OSCAR Team OSCAR BMS 16 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Advanced features:

Class and unit groups
absolute and relative fields
certified conjugates (ARB)

lattices, sparse and dense linear algebra
class field theory
abelian groups
associative algebras
elliptic curves

OSCAR Team OSCAR BMS 16 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Advanced features:

Class and unit groups
absolute and relative fields
certified conjugates (ARB)
lattices, sparse and dense linear algebra

class field theory
abelian groups
associative algebras
elliptic curves

OSCAR Team OSCAR BMS 16 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Advanced features:

Class and unit groups
absolute and relative fields
certified conjugates (ARB)
lattices, sparse and dense linear algebra
class field theory

abelian groups
associative algebras
elliptic curves

OSCAR Team OSCAR BMS 16 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Advanced features:

Class and unit groups
absolute and relative fields
certified conjugates (ARB)
lattices, sparse and dense linear algebra
class field theory
abelian groups

associative algebras
elliptic curves

OSCAR Team OSCAR BMS 16 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Advanced features:

Class and unit groups
absolute and relative fields
certified conjugates (ARB)
lattices, sparse and dense linear algebra
class field theory
abelian groups
associative algebras

elliptic curves

OSCAR Team OSCAR BMS 16 / 25

Examples: Current use of the individual cornerstone systems

Nemo/Hecke features

Advanced features:

Class and unit groups
absolute and relative fields
certified conjugates (ARB)
lattices, sparse and dense linear algebra
class field theory
abelian groups
associative algebras
elliptic curves

OSCAR Team OSCAR BMS 16 / 25

Examples: Current use of more than one cornerstone system

Extension fields

Sircana: Computing extensions of Q with certain Galois groups

Starts with a (permutation) Group G from GAP
Compute derived series of Group using GAP
Use groups in series to construct extension fields in Hecke

Benefits from the integration of GAP group theory into Julia!

OSCAR Team OSCAR BMS 17 / 25

Examples: Current use of more than one cornerstone system

Extension fields

Sircana: Computing extensions of Q with certain Galois groups

Starts with a (permutation) Group G from GAP

Compute derived series of Group using GAP
Use groups in series to construct extension fields in Hecke

Benefits from the integration of GAP group theory into Julia!

OSCAR Team OSCAR BMS 17 / 25

Examples: Current use of more than one cornerstone system

Extension fields

Sircana: Computing extensions of Q with certain Galois groups

Starts with a (permutation) Group G from GAP
Compute derived series of Group using GAP

Use groups in series to construct extension fields in Hecke

Benefits from the integration of GAP group theory into Julia!

OSCAR Team OSCAR BMS 17 / 25

Examples: Current use of more than one cornerstone system

Extension fields

Sircana: Computing extensions of Q with certain Galois groups

Starts with a (permutation) Group G from GAP
Compute derived series of Group using GAP
Use groups in series to construct extension fields in Hecke

Benefits from the integration of GAP group theory into Julia!

OSCAR Team OSCAR BMS 17 / 25

Examples: Current use of more than one cornerstone system

Extension fields

Sircana: Computing extensions of Q with certain Galois groups

Starts with a (permutation) Group G from GAP
Compute derived series of Group using GAP
Use groups in series to construct extension fields in Hecke

Benefits from the integration of GAP group theory into Julia!

OSCAR Team OSCAR BMS 17 / 25

Examples: Current use of more than one cornerstone system

GIT Fans

Böhm, Breuer, Gutsche, Paffenholz, Ren: Computing GIT fans

Needs matrices from Nemo
which are operated on by GAP permutation groups.
The orbits are used to compute Singular ideals for testing
which orbits should be turned into Polymake cones.
The cones and the Group are used to compute the GIT fan which is
stored in a specific Julia data structure.

All cornerstones are used!

OSCAR Team OSCAR BMS 18 / 25

Examples: Current use of more than one cornerstone system

GIT Fans

Böhm, Breuer, Gutsche, Paffenholz, Ren: Computing GIT fans

Needs matrices from Nemo

which are operated on by GAP permutation groups.
The orbits are used to compute Singular ideals for testing
which orbits should be turned into Polymake cones.
The cones and the Group are used to compute the GIT fan which is
stored in a specific Julia data structure.

All cornerstones are used!

OSCAR Team OSCAR BMS 18 / 25

Examples: Current use of more than one cornerstone system

GIT Fans

Böhm, Breuer, Gutsche, Paffenholz, Ren: Computing GIT fans

Needs matrices from Nemo
which are operated on by GAP permutation groups.

The orbits are used to compute Singular ideals for testing
which orbits should be turned into Polymake cones.
The cones and the Group are used to compute the GIT fan which is
stored in a specific Julia data structure.

All cornerstones are used!

OSCAR Team OSCAR BMS 18 / 25

Examples: Current use of more than one cornerstone system

GIT Fans

Böhm, Breuer, Gutsche, Paffenholz, Ren: Computing GIT fans

Needs matrices from Nemo
which are operated on by GAP permutation groups.
The orbits are used to compute Singular ideals for testing

which orbits should be turned into Polymake cones.
The cones and the Group are used to compute the GIT fan which is
stored in a specific Julia data structure.

All cornerstones are used!

OSCAR Team OSCAR BMS 18 / 25

Examples: Current use of more than one cornerstone system

GIT Fans

Böhm, Breuer, Gutsche, Paffenholz, Ren: Computing GIT fans

Needs matrices from Nemo
which are operated on by GAP permutation groups.
The orbits are used to compute Singular ideals for testing
which orbits should be turned into Polymake cones.

The cones and the Group are used to compute the GIT fan which is
stored in a specific Julia data structure.

All cornerstones are used!

OSCAR Team OSCAR BMS 18 / 25

Examples: Current use of more than one cornerstone system

GIT Fans

Böhm, Breuer, Gutsche, Paffenholz, Ren: Computing GIT fans

Needs matrices from Nemo
which are operated on by GAP permutation groups.
The orbits are used to compute Singular ideals for testing
which orbits should be turned into Polymake cones.
The cones and the Group are used to compute the GIT fan which is
stored in a specific Julia data structure.

All cornerstones are used!

OSCAR Team OSCAR BMS 18 / 25

Examples: Current use of more than one cornerstone system

GIT Fans

Böhm, Breuer, Gutsche, Paffenholz, Ren: Computing GIT fans

Needs matrices from Nemo
which are operated on by GAP permutation groups.
The orbits are used to compute Singular ideals for testing
which orbits should be turned into Polymake cones.
The cones and the Group are used to compute the GIT fan which is
stored in a specific Julia data structure.

All cornerstones are used!

OSCAR Team OSCAR BMS 18 / 25

Examples: Current use of more than one cornerstone system

Loewy structure of A(q, n, e)

Breuer: Compute the Loewy structure of the Singer algebra A(q, n, e)

For finding and testing conjectures, one has to look at many examples.
Here the focus changes from algebraic computations to combinatorial
ones (big loops).
With GAPJulia, Thomas could write code to solve combinatorial
problems in Julia, and call it within his GAP session
Contrary to GAP code, Julia code achieves similar performance as C,
but has richer data structures (e.g., iterators)
The tendency is to move more functionality (auxiliary functions,
caches) from GAP to Julia.

So using Julia can be used to speed up GAP computations.

OSCAR Team OSCAR BMS 19 / 25

Examples: Current use of more than one cornerstone system

Loewy structure of A(q, n, e)

Breuer: Compute the Loewy structure of the Singer algebra A(q, n, e)

For finding and testing conjectures, one has to look at many examples.

Here the focus changes from algebraic computations to combinatorial
ones (big loops).
With GAPJulia, Thomas could write code to solve combinatorial
problems in Julia, and call it within his GAP session
Contrary to GAP code, Julia code achieves similar performance as C,
but has richer data structures (e.g., iterators)
The tendency is to move more functionality (auxiliary functions,
caches) from GAP to Julia.

So using Julia can be used to speed up GAP computations.

OSCAR Team OSCAR BMS 19 / 25

Examples: Current use of more than one cornerstone system

Loewy structure of A(q, n, e)

Breuer: Compute the Loewy structure of the Singer algebra A(q, n, e)

For finding and testing conjectures, one has to look at many examples.
Here the focus changes from algebraic computations to combinatorial
ones (big loops).

With GAPJulia, Thomas could write code to solve combinatorial
problems in Julia, and call it within his GAP session
Contrary to GAP code, Julia code achieves similar performance as C,
but has richer data structures (e.g., iterators)
The tendency is to move more functionality (auxiliary functions,
caches) from GAP to Julia.

So using Julia can be used to speed up GAP computations.

OSCAR Team OSCAR BMS 19 / 25

Examples: Current use of more than one cornerstone system

Loewy structure of A(q, n, e)

Breuer: Compute the Loewy structure of the Singer algebra A(q, n, e)

For finding and testing conjectures, one has to look at many examples.
Here the focus changes from algebraic computations to combinatorial
ones (big loops).
With GAPJulia, Thomas could write code to solve combinatorial
problems in Julia, and call it within his GAP session

Contrary to GAP code, Julia code achieves similar performance as C,
but has richer data structures (e.g., iterators)
The tendency is to move more functionality (auxiliary functions,
caches) from GAP to Julia.

So using Julia can be used to speed up GAP computations.

OSCAR Team OSCAR BMS 19 / 25

Examples: Current use of more than one cornerstone system

Loewy structure of A(q, n, e)

Breuer: Compute the Loewy structure of the Singer algebra A(q, n, e)

For finding and testing conjectures, one has to look at many examples.
Here the focus changes from algebraic computations to combinatorial
ones (big loops).
With GAPJulia, Thomas could write code to solve combinatorial
problems in Julia, and call it within his GAP session
Contrary to GAP code, Julia code achieves similar performance as C,
but has richer data structures (e.g., iterators)

The tendency is to move more functionality (auxiliary functions,
caches) from GAP to Julia.

So using Julia can be used to speed up GAP computations.

OSCAR Team OSCAR BMS 19 / 25

Examples: Current use of more than one cornerstone system

Loewy structure of A(q, n, e)

Breuer: Compute the Loewy structure of the Singer algebra A(q, n, e)

For finding and testing conjectures, one has to look at many examples.
Here the focus changes from algebraic computations to combinatorial
ones (big loops).
With GAPJulia, Thomas could write code to solve combinatorial
problems in Julia, and call it within his GAP session
Contrary to GAP code, Julia code achieves similar performance as C,
but has richer data structures (e.g., iterators)
The tendency is to move more functionality (auxiliary functions,
caches) from GAP to Julia.

So using Julia can be used to speed up GAP computations.

OSCAR Team OSCAR BMS 19 / 25

Examples: Current use of more than one cornerstone system

Loewy structure of A(q, n, e)

Breuer: Compute the Loewy structure of the Singer algebra A(q, n, e)

For finding and testing conjectures, one has to look at many examples.
Here the focus changes from algebraic computations to combinatorial
ones (big loops).
With GAPJulia, Thomas could write code to solve combinatorial
problems in Julia, and call it within his GAP session
Contrary to GAP code, Julia code achieves similar performance as C,
but has richer data structures (e.g., iterators)
The tendency is to move more functionality (auxiliary functions,
caches) from GAP to Julia.

So using Julia can be used to speed up GAP computations.

OSCAR Team OSCAR BMS 19 / 25

Examples: Current use of more than one cornerstone system

Loewy structure of A(q, n, e)

Breuer: Compute the Loewy structure of the Singer algebra A(q, n, e)

For finding and testing conjectures, one has to look at many examples.
Here the focus changes from algebraic computations to combinatorial
ones (big loops).
With GAPJulia, Thomas could write code to solve combinatorial
problems in Julia, and call it within his GAP session
Contrary to GAP code, Julia code achieves similar performance as C,
but has richer data structures (e.g., iterators)
The tendency is to move more functionality (auxiliary functions,
caches) from GAP to Julia.

So using Julia can be used to speed up GAP computations.

OSCAR Team OSCAR BMS 19 / 25

Design Questions: The beginnings of a unified interface

The key of OSCAR: Consistent mathematical model

The most important feature of a CAS: Composability!

Composability means that constructed data can be used as input for
all applicable functions
To achieve that, rigorous interfaces need to be defined, and
“mathematical data structures” need to be designed
So a main goal of OSCAR is providing well-defined, rigorous, and
compatible data structures on top of the cornerstone interfaces

OSCAR Team OSCAR BMS 20 / 25

Design Questions: The beginnings of a unified interface

The key of OSCAR: Consistent mathematical model

The most important feature of a CAS: Composability!
Composability means that constructed data can be used as input for
all applicable functions

To achieve that, rigorous interfaces need to be defined, and
“mathematical data structures” need to be designed
So a main goal of OSCAR is providing well-defined, rigorous, and
compatible data structures on top of the cornerstone interfaces

OSCAR Team OSCAR BMS 20 / 25

Design Questions: The beginnings of a unified interface

The key of OSCAR: Consistent mathematical model

The most important feature of a CAS: Composability!
Composability means that constructed data can be used as input for
all applicable functions
To achieve that, rigorous interfaces need to be defined, and
“mathematical data structures” need to be designed

So a main goal of OSCAR is providing well-defined, rigorous, and
compatible data structures on top of the cornerstone interfaces

OSCAR Team OSCAR BMS 20 / 25

Design Questions: The beginnings of a unified interface

The key of OSCAR: Consistent mathematical model

The most important feature of a CAS: Composability!
Composability means that constructed data can be used as input for
all applicable functions
To achieve that, rigorous interfaces need to be defined, and
“mathematical data structures” need to be designed
So a main goal of OSCAR is providing well-defined, rigorous, and
compatible data structures on top of the cornerstone interfaces

OSCAR Team OSCAR BMS 20 / 25

Design Questions: The beginnings of a unified interface

OscarPolytope.jl

OscarPolytope is the OSCAR component that defines convex geometry
objects

OscarPolytope.jl provides data structures for Polytopes

Inspired by the needs of users:
Polytopes are modeled on top of Polymake.jl, but with inhomogeneous
coordinates (more natural)
One can compute lattice points, Hilbert Bases, and ILP solutions
Everything is translated into “natural” coordinates

OSCAR Team OSCAR BMS 21 / 25

Design Questions: The beginnings of a unified interface

OscarPolytope.jl

OscarPolytope is the OSCAR component that defines convex geometry
objects

OscarPolytope.jl provides data structures for Polytopes
Inspired by the needs of users:

Polytopes are modeled on top of Polymake.jl, but with inhomogeneous
coordinates (more natural)

One can compute lattice points, Hilbert Bases, and ILP solutions
Everything is translated into “natural” coordinates

OSCAR Team OSCAR BMS 21 / 25

Design Questions: The beginnings of a unified interface

OscarPolytope.jl

OscarPolytope is the OSCAR component that defines convex geometry
objects

OscarPolytope.jl provides data structures for Polytopes
Inspired by the needs of users:

Polytopes are modeled on top of Polymake.jl, but with inhomogeneous
coordinates (more natural)
One can compute lattice points, Hilbert Bases, and ILP solutions

Everything is translated into “natural” coordinates

OSCAR Team OSCAR BMS 21 / 25

Design Questions: The beginnings of a unified interface

OscarPolytope.jl

OscarPolytope is the OSCAR component that defines convex geometry
objects

OscarPolytope.jl provides data structures for Polytopes
Inspired by the needs of users:

Polytopes are modeled on top of Polymake.jl, but with inhomogeneous
coordinates (more natural)
One can compute lattice points, Hilbert Bases, and ILP solutions
Everything is translated into “natural” coordinates

OSCAR Team OSCAR BMS 21 / 25

Design Questions: The beginnings of a unified interface

Oscar.jl

Besides being a module that loads the OSCAR components, Oscar.jl
defines data structures for commutative algebra

Ideals that behave like ideals, not like lists of polynomials, (e.g.,
set-theoretic equality instead of lists of polynomials)
Soon: Interfaces for modules

Defined mathematical operations, e.g., isfree or istorsionfree
Several data structures: Quotients, subquotients, Dedekind modules
Mathematical objects, not only collections of matrices

OSCAR Team OSCAR BMS 22 / 25

Design Questions: The beginnings of a unified interface

Oscar.jl

Besides being a module that loads the OSCAR components, Oscar.jl
defines data structures for commutative algebra

Ideals that behave like ideals, not like lists of polynomials,

(e.g.,
set-theoretic equality instead of lists of polynomials)
Soon: Interfaces for modules

Defined mathematical operations, e.g., isfree or istorsionfree
Several data structures: Quotients, subquotients, Dedekind modules
Mathematical objects, not only collections of matrices

OSCAR Team OSCAR BMS 22 / 25

Design Questions: The beginnings of a unified interface

Oscar.jl

Besides being a module that loads the OSCAR components, Oscar.jl
defines data structures for commutative algebra

Ideals that behave like ideals, not like lists of polynomials, (e.g.,
set-theoretic equality instead of lists of polynomials)

Soon: Interfaces for modules
Defined mathematical operations, e.g., isfree or istorsionfree
Several data structures: Quotients, subquotients, Dedekind modules
Mathematical objects, not only collections of matrices

OSCAR Team OSCAR BMS 22 / 25

Design Questions: The beginnings of a unified interface

Oscar.jl

Besides being a module that loads the OSCAR components, Oscar.jl
defines data structures for commutative algebra

Ideals that behave like ideals, not like lists of polynomials, (e.g.,
set-theoretic equality instead of lists of polynomials)
Soon: Interfaces for modules

Defined mathematical operations, e.g., isfree or istorsionfree
Several data structures: Quotients, subquotients, Dedekind modules
Mathematical objects, not only collections of matrices

OSCAR Team OSCAR BMS 22 / 25

Design Questions: The beginnings of a unified interface

Oscar.jl

Besides being a module that loads the OSCAR components, Oscar.jl
defines data structures for commutative algebra

Ideals that behave like ideals, not like lists of polynomials, (e.g.,
set-theoretic equality instead of lists of polynomials)
Soon: Interfaces for modules

Defined mathematical operations, e.g., isfree or istorsionfree

Several data structures: Quotients, subquotients, Dedekind modules
Mathematical objects, not only collections of matrices

OSCAR Team OSCAR BMS 22 / 25

Design Questions: The beginnings of a unified interface

Oscar.jl

Besides being a module that loads the OSCAR components, Oscar.jl
defines data structures for commutative algebra

Ideals that behave like ideals, not like lists of polynomials, (e.g.,
set-theoretic equality instead of lists of polynomials)
Soon: Interfaces for modules

Defined mathematical operations, e.g., isfree or istorsionfree
Several data structures: Quotients, subquotients, Dedekind modules

Mathematical objects, not only collections of matrices

OSCAR Team OSCAR BMS 22 / 25

Design Questions: The beginnings of a unified interface

Oscar.jl

Besides being a module that loads the OSCAR components, Oscar.jl
defines data structures for commutative algebra

Ideals that behave like ideals, not like lists of polynomials, (e.g.,
set-theoretic equality instead of lists of polynomials)
Soon: Interfaces for modules

Defined mathematical operations, e.g., isfree or istorsionfree
Several data structures: Quotients, subquotients, Dedekind modules
Mathematical objects, not only collections of matrices

OSCAR Team OSCAR BMS 22 / 25

Design Questions: The beginnings of a unified interface

Key feature: User interface

Another key feature in the modern computing environment is accessibility:

Graphical user interfaces lower the entry barrier for users
Currently, all systems can be used from Jupyter, so we get the
infrastructure for free
Jupyter allows for rich output (e.g, formulas displayed nicely, foldable
coefficients or matrices, graphics)
In both Julia and GAP we can directly bring our outputs into a rich
displayed shape

So OSCAR will come fully equipped with a graphical interface!

OSCAR Team OSCAR BMS 23 / 25

Design Questions: The beginnings of a unified interface

Key feature: User interface

Another key feature in the modern computing environment is accessibility:

Graphical user interfaces lower the entry barrier for users

Currently, all systems can be used from Jupyter, so we get the
infrastructure for free
Jupyter allows for rich output (e.g, formulas displayed nicely, foldable
coefficients or matrices, graphics)
In both Julia and GAP we can directly bring our outputs into a rich
displayed shape

So OSCAR will come fully equipped with a graphical interface!

OSCAR Team OSCAR BMS 23 / 25

Design Questions: The beginnings of a unified interface

Key feature: User interface

Another key feature in the modern computing environment is accessibility:

Graphical user interfaces lower the entry barrier for users
Currently, all systems can be used from Jupyter, so we get the
infrastructure for free

Jupyter allows for rich output (e.g, formulas displayed nicely, foldable
coefficients or matrices, graphics)
In both Julia and GAP we can directly bring our outputs into a rich
displayed shape

So OSCAR will come fully equipped with a graphical interface!

OSCAR Team OSCAR BMS 23 / 25

Design Questions: The beginnings of a unified interface

Key feature: User interface

Another key feature in the modern computing environment is accessibility:

Graphical user interfaces lower the entry barrier for users
Currently, all systems can be used from Jupyter, so we get the
infrastructure for free
Jupyter allows for rich output (e.g, formulas displayed nicely, foldable
coefficients or matrices, graphics)

In both Julia and GAP we can directly bring our outputs into a rich
displayed shape

So OSCAR will come fully equipped with a graphical interface!

OSCAR Team OSCAR BMS 23 / 25

Design Questions: The beginnings of a unified interface

Key feature: User interface

Another key feature in the modern computing environment is accessibility:

Graphical user interfaces lower the entry barrier for users
Currently, all systems can be used from Jupyter, so we get the
infrastructure for free
Jupyter allows for rich output (e.g, formulas displayed nicely, foldable
coefficients or matrices, graphics)
In both Julia and GAP we can directly bring our outputs into a rich
displayed shape

So OSCAR will come fully equipped with a graphical interface!

OSCAR Team OSCAR BMS 23 / 25

Design Questions: The beginnings of a unified interface

Key feature: User interface

Another key feature in the modern computing environment is accessibility:

Graphical user interfaces lower the entry barrier for users
Currently, all systems can be used from Jupyter, so we get the
infrastructure for free
Jupyter allows for rich output (e.g, formulas displayed nicely, foldable
coefficients or matrices, graphics)
In both Julia and GAP we can directly bring our outputs into a rich
displayed shape

So OSCAR will come fully equipped with a graphical interface!

OSCAR Team OSCAR BMS 23 / 25

Future plans

Future plans

Near future
Explore the possibilities of the Julia type system

Create interfaces and implementation for many mathematical objects
Stabilize the interfaces more

Then
Gather language features that are needed, and explore possibilities of
GAP and Julia
Implement higher mathematical algorithms
Provide releases and training!
...

OSCAR Team OSCAR BMS 25 / 25

Future plans

Future plans

Near future
Explore the possibilities of the Julia type system
Create interfaces and implementation for many mathematical objects

Stabilize the interfaces more

Then
Gather language features that are needed, and explore possibilities of
GAP and Julia
Implement higher mathematical algorithms
Provide releases and training!
...

OSCAR Team OSCAR BMS 25 / 25

Future plans

Future plans

Near future
Explore the possibilities of the Julia type system
Create interfaces and implementation for many mathematical objects
Stabilize the interfaces more

Then
Gather language features that are needed, and explore possibilities of
GAP and Julia
Implement higher mathematical algorithms
Provide releases and training!
...

OSCAR Team OSCAR BMS 25 / 25

Future plans

Future plans

Near future
Explore the possibilities of the Julia type system
Create interfaces and implementation for many mathematical objects
Stabilize the interfaces more

Then
Gather language features that are needed, and explore possibilities of
GAP and Julia

Implement higher mathematical algorithms
Provide releases and training!
...

OSCAR Team OSCAR BMS 25 / 25

Future plans

Future plans

Near future
Explore the possibilities of the Julia type system
Create interfaces and implementation for many mathematical objects
Stabilize the interfaces more

Then
Gather language features that are needed, and explore possibilities of
GAP and Julia
Implement higher mathematical algorithms

Provide releases and training!
...

OSCAR Team OSCAR BMS 25 / 25

Future plans

Future plans

Near future
Explore the possibilities of the Julia type system
Create interfaces and implementation for many mathematical objects
Stabilize the interfaces more

Then
Gather language features that are needed, and explore possibilities of
GAP and Julia
Implement higher mathematical algorithms
Provide releases and training!

...

OSCAR Team OSCAR BMS 25 / 25

Future plans

Future plans

Near future
Explore the possibilities of the Julia type system
Create interfaces and implementation for many mathematical objects
Stabilize the interfaces more

Then
Gather language features that are needed, and explore possibilities of
GAP and Julia
Implement higher mathematical algorithms
Provide releases and training!
...

OSCAR Team OSCAR BMS 25 / 25

	What did we promise?
	Examples: Current use of the individual cornerstone systems
	Examples: Current use of more than one cornerstone system
	Design Questions: The beginnings of a unified interface
	Future plans

